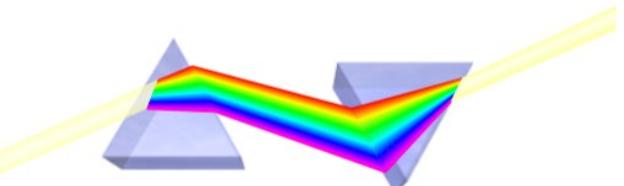


CIVIL - 450: THERMODYNAMICS of COMFORT in BUILDINGS

Dolaana Khovalyg

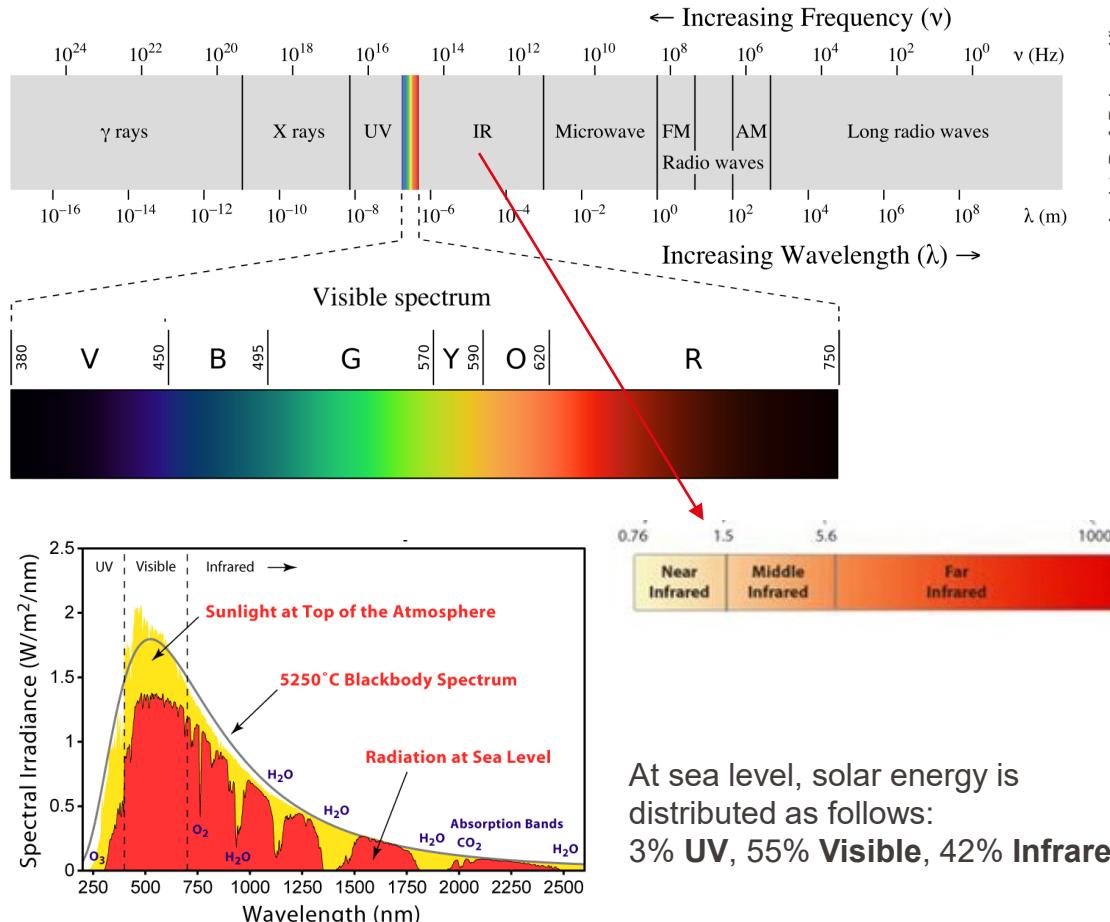
Lecture 06:
Performance of Windows


Classroom GC D0 386 is on the Lausanne campus

WEEK	DATE	CONTENT	LOCATION
1	21.02.2025	Intro to thermal comfort and human thermoregulation	GC D0 386
2	28.02.2025	Human body energy balance	GC D0 386
3	07.03.2025	Exergy analysis in the built environment (<i>guest lecture</i>)	GC D0 386
4	14.03.2025	Lab #1 in Fribourg (climatic chamber). Measurements and instrumentation.	EPFL-Fribourg
5	21.03.2025	Group work on Lab #1	GC D0 386
6	28.03.2025	Group work on Lab #1	GC D0 386
7	04.04.2025	Invisible radiant heat: transparent & translucent building elements and their effect on comfort (<i>guest lecture</i>)	GC D0 386
8	11.04.2025	Lab #1 presentations, reports submission	GC D0 386
9	18.04.2025	Good Friday (holiday)	No class
10	25.04.2025	Easter break	No class
11	02.05.2025	Lab #2 in Fribourg (building prototype)	EPFL-Fribourg
12	09.05.2025	Building-environment interaction and energy balance	GC D0 386
		Group work on Lab #2	
13	16.05.2025	Group work on Lab #2	GC D0 386
14	23.05.2025	Group work on Lab #2	GC D0 386
15	30.05.2025	Lab #2 presentations, reports submission. Course summary and course evaluation.	GC D0 386

CONTENT:

- **Introduction:**
 - Electromagnetic waves and spectra
 - Radiant and luminous fluxes, solar irradiance/irradiation, illuminance
- **Performance of windows and shades:**
 - Transmittance / Reflectance / Absorbtion
 - g and g_{tot} values, their typical ranges
- **Overview of measuring instruments**

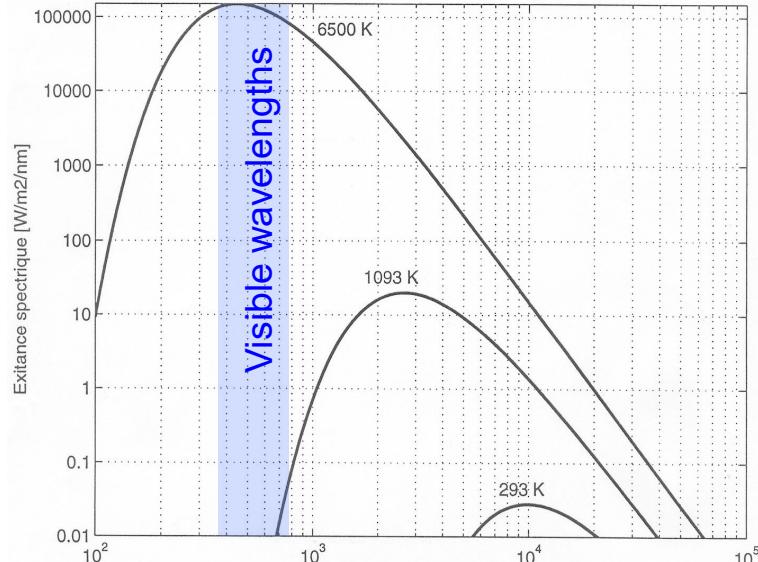

Energy travelling as Electromagnetic Waves

- Any **electromagnetic wave (EM)** can be characterized by its frequency ν or its wavelength λ :

$$c = \nu \cdot \lambda \quad (6-1)$$

c - wave velocity in [m/s]

- For EM waves, various «bands» are defined according to the physical phenomena they can trigger or undergo
- For humans, **visible wavelengths** are from 380 to 780 nm
- The **infrared band** is subdivided into three (near, middle, and far)



At sea level, solar energy is distributed as follows:
3% UV, 55% Visible, 42% Infrared

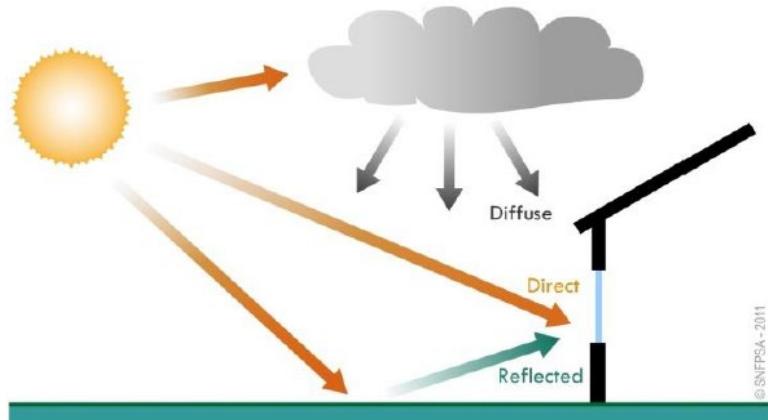
Some physical characteristics of a radiant flux

- An electromagnetic flux is generally composed of a *huge number of waves* each having its own wavelength, a spectrum shows how the radiant power is distributed over wavelengths
- Any surface at $T > 0$ K spontaneously emits electromagnetic waves. Although it is called *thermal* radiation, this is not heat
- The spectrum of this radiation (called black-body spectrum) varies with the temperature.

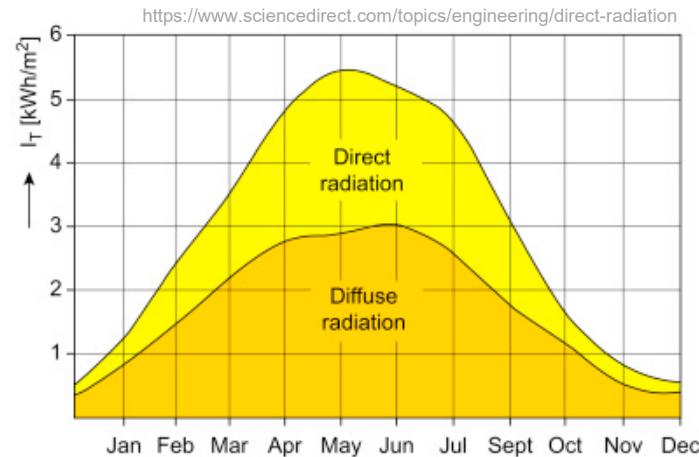
For common ambient temperatures ~ 293 K, the emitted spectrum is located around $10 \mu\text{m}$ (i.e. in far infrared)

- **Radiant flux per unit wavelength $\Phi_{e,\lambda}$** - spectral flux usually in [W/nm]
- **Radiant power emitted, reflected, transmitted or received Φ_e** - radiant flux in [W]

Φ_e is computed by integrating $\Phi_{e,\lambda}$ (i.e. the spectrum) over the wavelengths

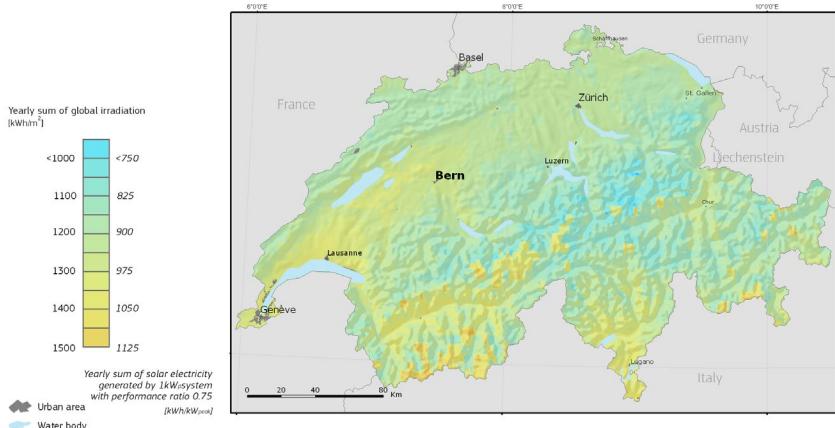

- **Radiant flux received by a surface per unit area I** - irradiance or **flux density** in $[\text{W/m}^2]$

When dealing with irradiance, the orientation of the receiving plane must be specified!

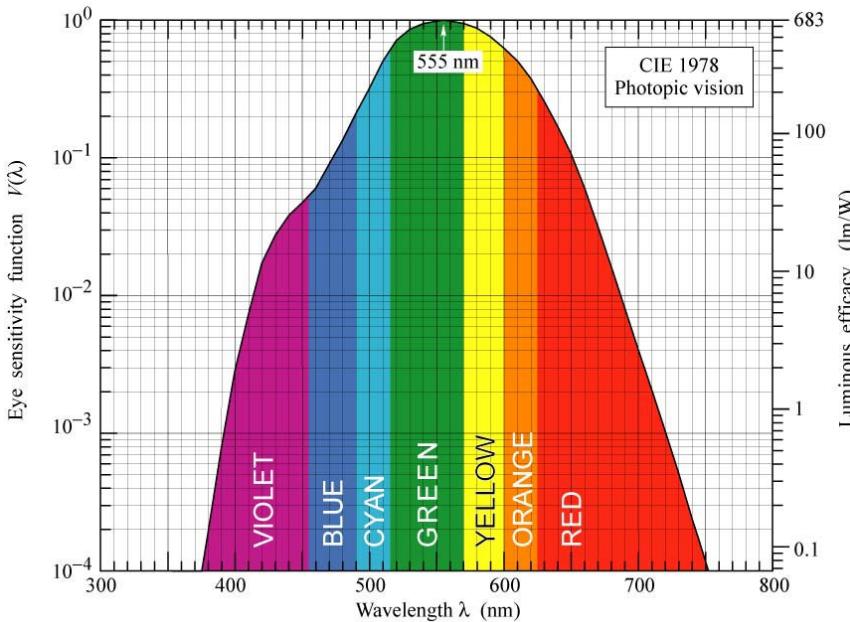

- **Global solar irradiance I_g** in $[\text{W/m}^2]$ incident on a surface can be divided into 3 components according to its source:
 - **direct (or beam) irradiance I_b** : for the beam coming from the sun
 - **diffuse irradiance I_d** : for the part coming from the rest of the visible sky vault
 - **reflected irradiance I_r** : from reflections over the ground and surrounding obstructions located in front of the surface

$$I_g = I_b + I_d + I_r \text{ in } [\text{W/m}^2] \quad (6-2)$$

- It is common that $I_d + I_r$ are not separately distinguished and are called **diffuse component**
- When irradiance is *integrated over a period of time*, the result is called **irradiation** measured in $[\text{kWh/m}^2]$

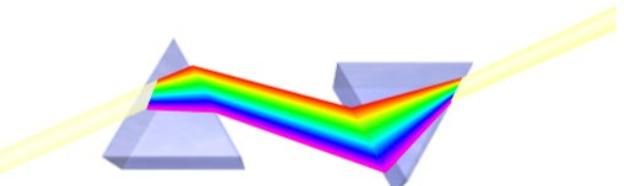

© SNFPA - 2011

- Solar irradiance/irradiation data for specific locations are important climatic information for the analysis of buildings
- There are multiple reliable sources:
 - METEONORM software: www.meteonorm.com
 - Online web databases:
 - PVGIS: re.jrc.ec.europa.eu/pvgis/
 - SODA-IS: www.soda-is.com
 - SATEL-LIGHT: www.satel-light.com
 - Current values at Swiss meteorological stations: www.meteoswiss.admin.ch/home/measurement-values.html?param=messwerte-globalstrahlung-10min&chart=hour
- Swiss standard [SIA 2028 «Données climatiques pour la physique du bâtiment, l'énergie et les installations du bâtiment»](#)


A global yearly irradiation map for horizontal surfaces available from PVGIS:
([click here to enlarge](#))

Global irradiation and solar electricity potential
Horizontally mounted photovoltaic modules

Characterizing the visible component of a radiant flux


- The human eye's sensitivity strongly varies over the range of visible wavelengths modelled by a function called $V(\lambda)$
- Therefore, to quantify the «visible» (or «luminous») content of a radiant flux, its spectral flux $\Phi_{e,\lambda}$ must first be weighted by $V(\lambda)$
- The resulting «photometric» characteristics are measured using a SI unit called «lumen» [lm]
- **Φ_v luminous flux** in [lm]: luminous power emitted, reflected, transmitted or received
- **E_v illuminance** in [lm/m^2] or [lx]: luminous flux *received by a surface per unit area*

CONTENT:

- **Introduction:**
 - Electromagnetic waves and spectra
 - Radiant and luminous fluxes, solar irradiance/irradiation, illuminance
- **Performance of windows and shades:**
 - Transmittance / Reflectance / Absorbtion
 - g and g_{tot} values, their typical ranges
- **Overview of measuring instruments**

EPFL Characterizing radiant flux interactions with materials

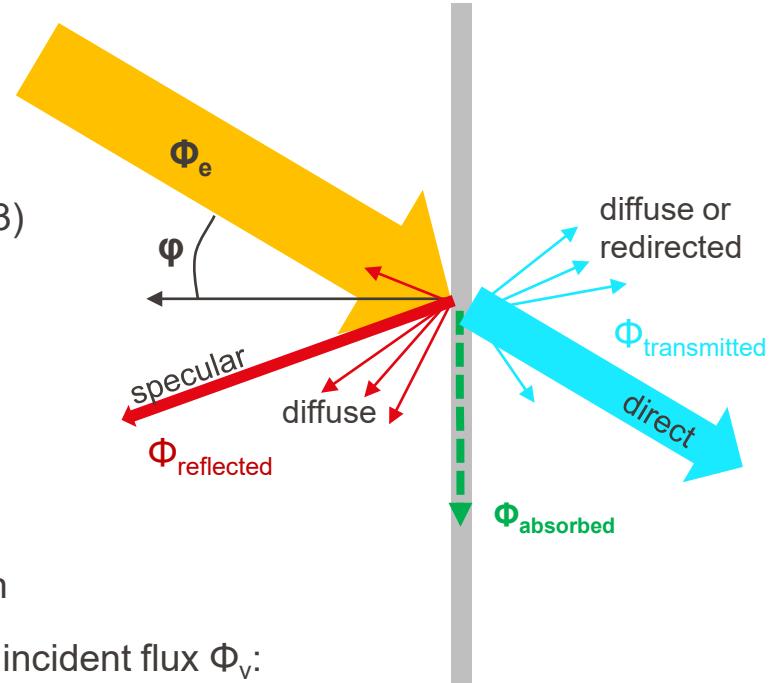
- What happens to a radiant flux Φ_e incident on a pane of material?
 - Specular or diffuse reflection
 - Direct, diffuse or redirected transmission
 - Absorption (this part is converted to heat)
- Because of the energy conservation law:

$$\Phi_{\text{reflected}} + \Phi_{\text{transmitted}} + \Phi_{\text{absorbed}} = \Phi_e \quad (6-3)$$

After dividing the previous equation by Φ_e :

$$\Phi_{\text{reflected}}/\Phi_e + \Phi_{\text{transmitted}}/\Phi_e + \Phi_{\text{absorbed}}/\Phi_e = 1$$

- Rewriting this by defining factors:

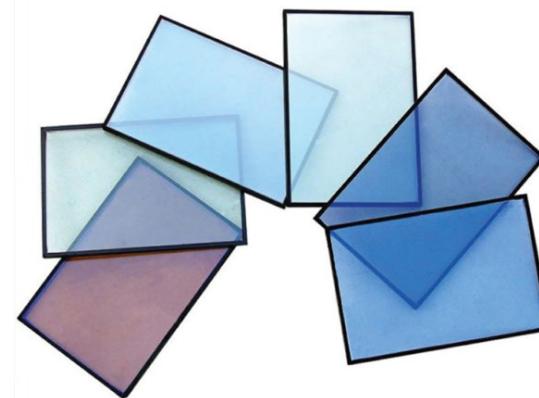

$$\rho + \tau + \alpha = 1 \quad (6-4)$$

ρ – reflectance, τ – transmittance, α - absorption

- Similar equation can be specified for a luminous incident flux Φ_v :

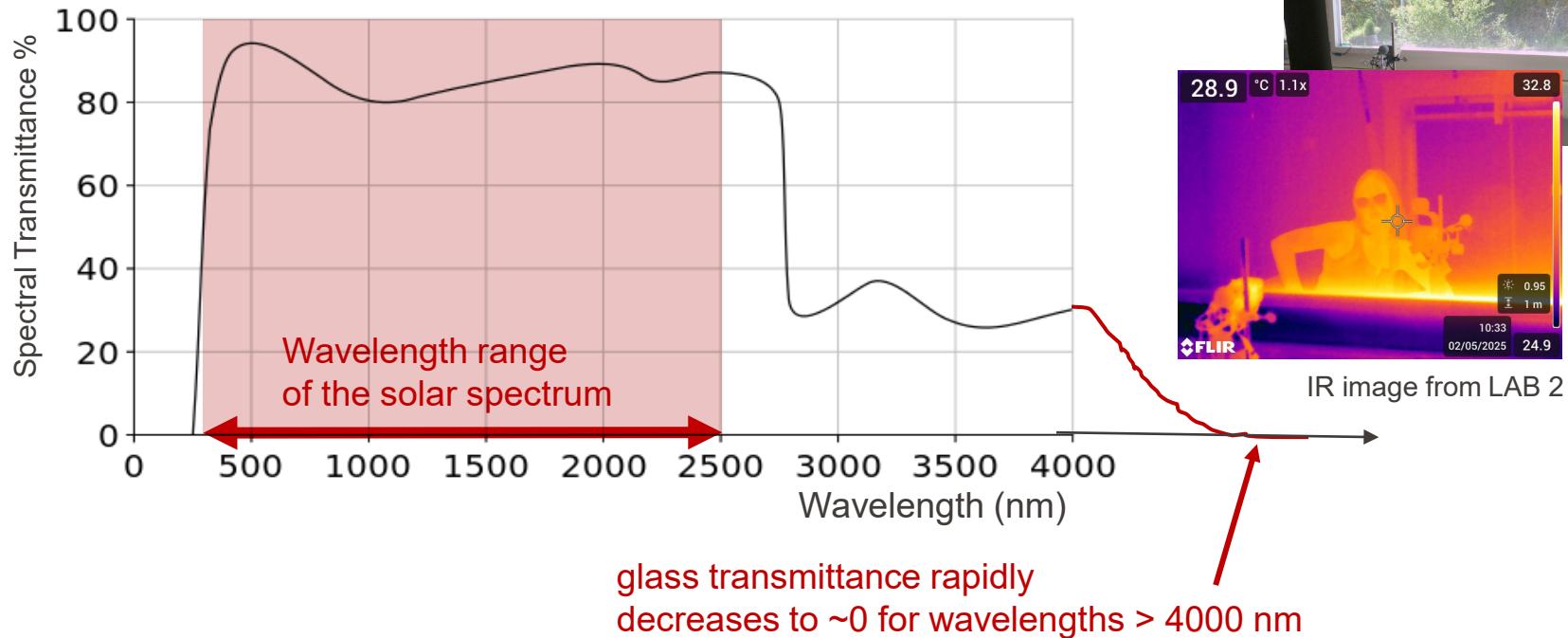
$$\rho_v + \tau_v + \alpha_v = 1 \quad (6-5)$$

- These characteristics depend on the incidence angle φ



Estimations from specific words & visual clues

- **Opaque material:** $\tau_v = 0$
- **Mirror:** high ρ_v , reflection is mainly specular
- **Opaque white surface:** high ρ_v , reflection is mainly diffuse
- **Transparent material:** high τ_v
- **Clear glass:** high τ_v , transmission is mainly direct, reflection is mainly specular
- **Extra-clear glass** (also called «white glass»): particularly high τ_v
- **Translucent material:** relatively high τ_v , transmission and reflection are mainly diffuse
- **Reflecting glass:** high ρ_v
- **Absorbing glass:** high α_v
- **Tinted glass:** the spectra of the *reflected* and *transmitted* fluxes are altered either by a special coating or chemical additives in the glass


Clear glass vs. white glass

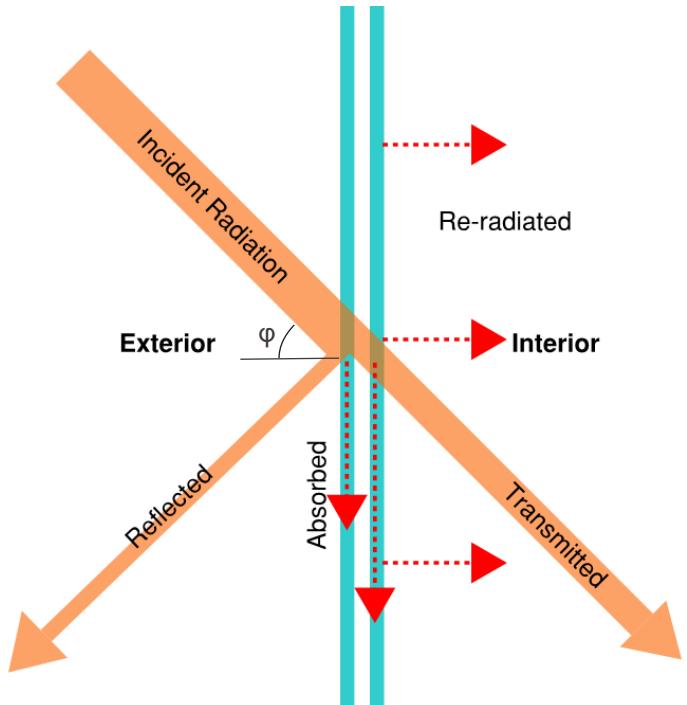
Special coatings affecting the colour appearance of the glazing

EPFL Transmittance of a clear glass pane

- Glass is a **selective** material since its *spectral transmittance* differs largely between **solar wavelength range** (high transmittance, $\tau_{v,0.3-3\text{ nm}} > 0$) and **thermal radiation wavelengths** range at common ambient temperatures $\sim 293\text{ K}$ (no transmittance, $\tau_{v, 4-100\text{ nm}} \sim 0$)
- This explains the strong greenhouse effect caused by glass

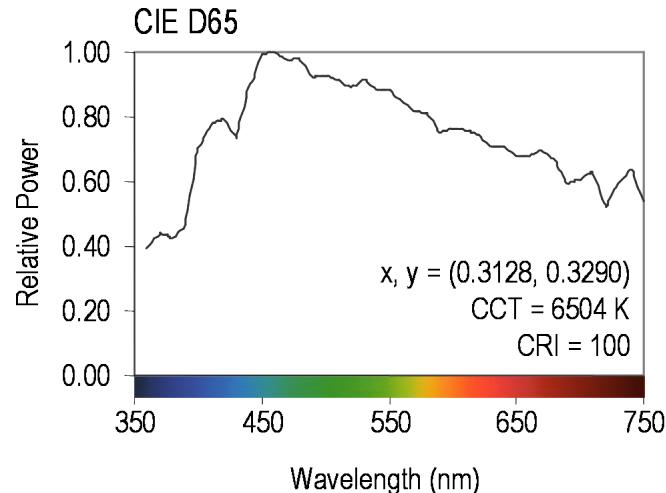
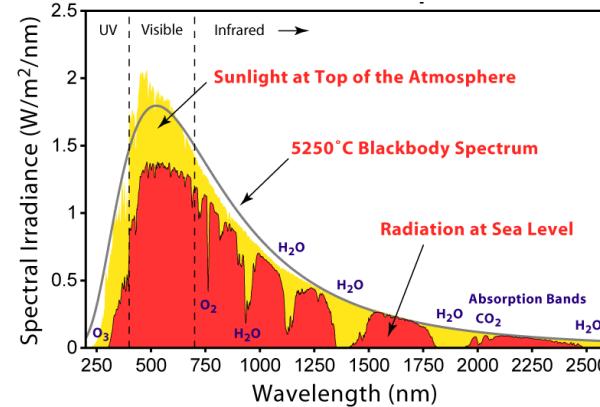
g-value (also called Solar Factor or Total Solar Energy Transmittance)

- Solar gains through a glazing include:


- radiation *transmitted* directly through the glass
- energy absorbed by the glass and then released as heat towards the interior (via radiation and convection)

$$g = \frac{\text{total solar gains transmitted}}{\text{incident irradiation (on the window pane)}} = \tau_e + q_i \quad (6-6)$$

τ_e - **solar global transmittance**, ratio between the irradiance on the inner surface of the window and the irradiance incident on the outer surface of the window

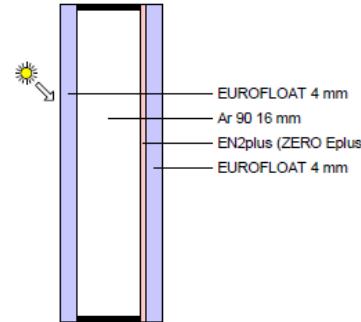


q_i - **secondary internal heat transfer factor**, ratio of the *total heat transferred indoors* and the *global irradiance* incident on the outer surface of the window

- g-values are usually specified for a radiation beam at *normal incidence* relatively to the glass plane!
(angle of incidence $\phi=0^\circ$)

Standard glazing information

- The most useful glazing's characteristics that are provided by their manufacturers are rarely spectral but defined for 2 standard spectra:
 - Solar direct transmittance $\tau_{\text{solar}, n, h}$** (directional-hemispherical) for normal incidence, thus abbreviated (n-h), with the standard solar spectrum at sea level
 - Secondary internal heat transfer factor q_i** (same conditions as above)
- g value**, calculated from equation (6-6)
- Light transmission $\tau_v(D65, n, h)$** (normal-hemispherical) (n-h) with the standard CIE D65 illuminant spectrum

- Some glass manufacturers offer online tools to compute g-values and several other characteristics of their products

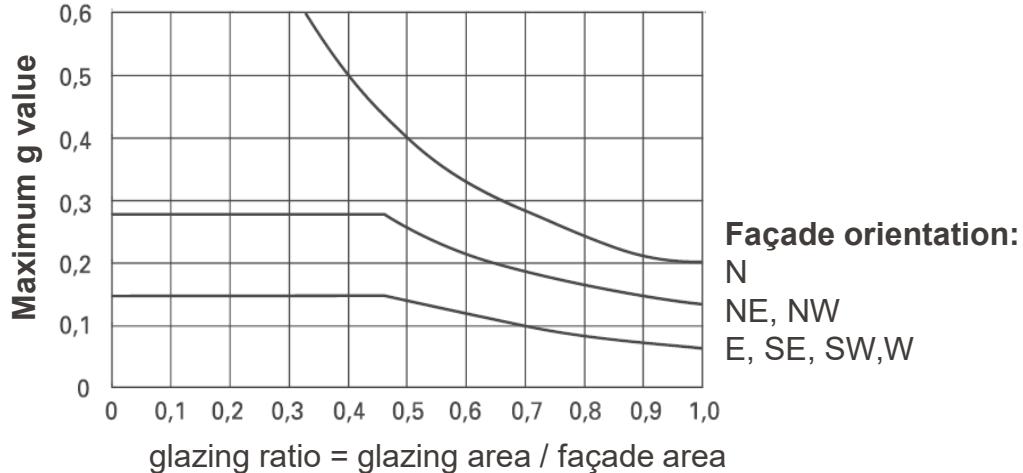

Usually they require to register before being allowed to use them for free

- www.euroglas.com/en/service-portal/calculation-programmes/glace.html
- glassanalytics.guardian.com/
(particularly interesting: the visual appearance of various glazing can be compared)
- A software called **WINDOW 7** based on a large collection of optical data for glazing products

- Even if a particular glazing composition can be evaluated by these tools it may not be manufacturable or simply unrealistic

Glazing:

Window tilt angle: 90 °



Comments:

Calculated glazing characteristics:

Thermal transmittance U_g :	1.12 W/m ² K	EN 673:2011
Total solar energy transmittance (solar factor g):	64.3 %	
Light transmittance:	81.6 %	
Light reflectance (outside):	11.9 %	
Light reflectance (inside):	11.5 %	
Light absorptance:	6.5 %	
Solar direct transmittance:	56.2 %	
Solar direct reflectance (outside):	25.7 %	
Solar direct absorptance:	18.1 %	
Secondary internal heat transfer factor:	8.1 %	EN 410:2011
UV-Transmittance:	30.0 %	
UV-Reflectance:	17.5 %	
UV-Absorptance:	52.6 %	
General colour rendering index (transmission):	97.7	
Selectivity (light transmittance / solar factor g):	1.27	
Shading coefficient (solar factor $g / 0.87$):	73.9 %	
Shading coefficient (solar factor $g / 0.8$):	80.4 %	

- To prevent buildings to overheat in summer and to avoid the need of an artificial cooling installation (or to reduce its power), **solar gains must be limited!**
- Swiss standard [SIA180:2014](#) specifies 3 methods to ensure, at the design stage, that the risk of overheating will remain limited.
 - A first requirement is to check the **maximum g value allowed** for glazing combined with their solar protection devices
 - Unfortunately, there are very few glazing reaching so low g values *without* any additional solar protection device such as blinds

Light transmittance τ_v versus g-value of glazing

- These 2 characteristics are rather correlated
- Important conclusion: unfortunately “*solar control glazing*” (i.e. with low g-values) always significantly decrease the provision of daylight (low light transmission)
- glassdbase.epfl.ch provides such data + many more characteristics (even spectral) for several glazing

Light transmittance vs. g-value of current glazings

Characteristics taken from three European glass manufacturers' websites

● double ● triple ● triple electrochromic

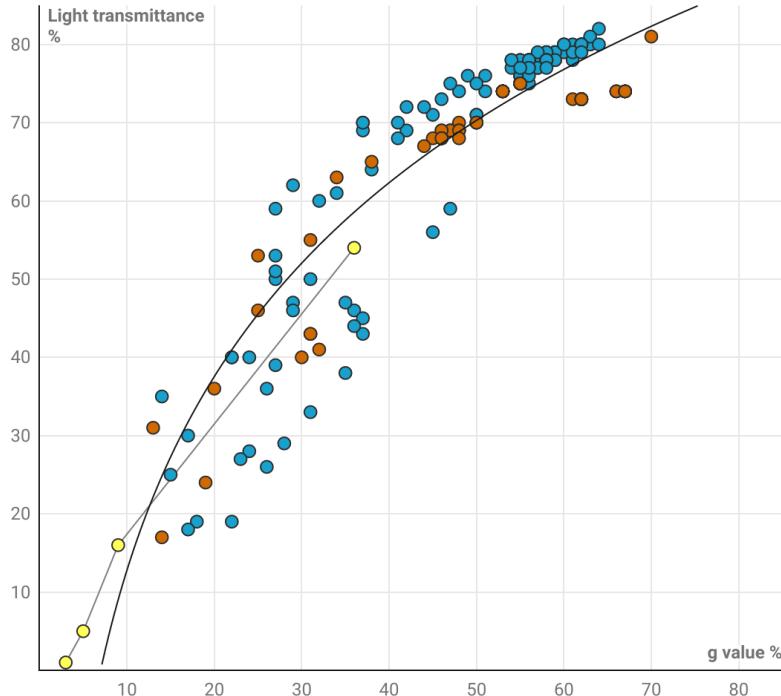
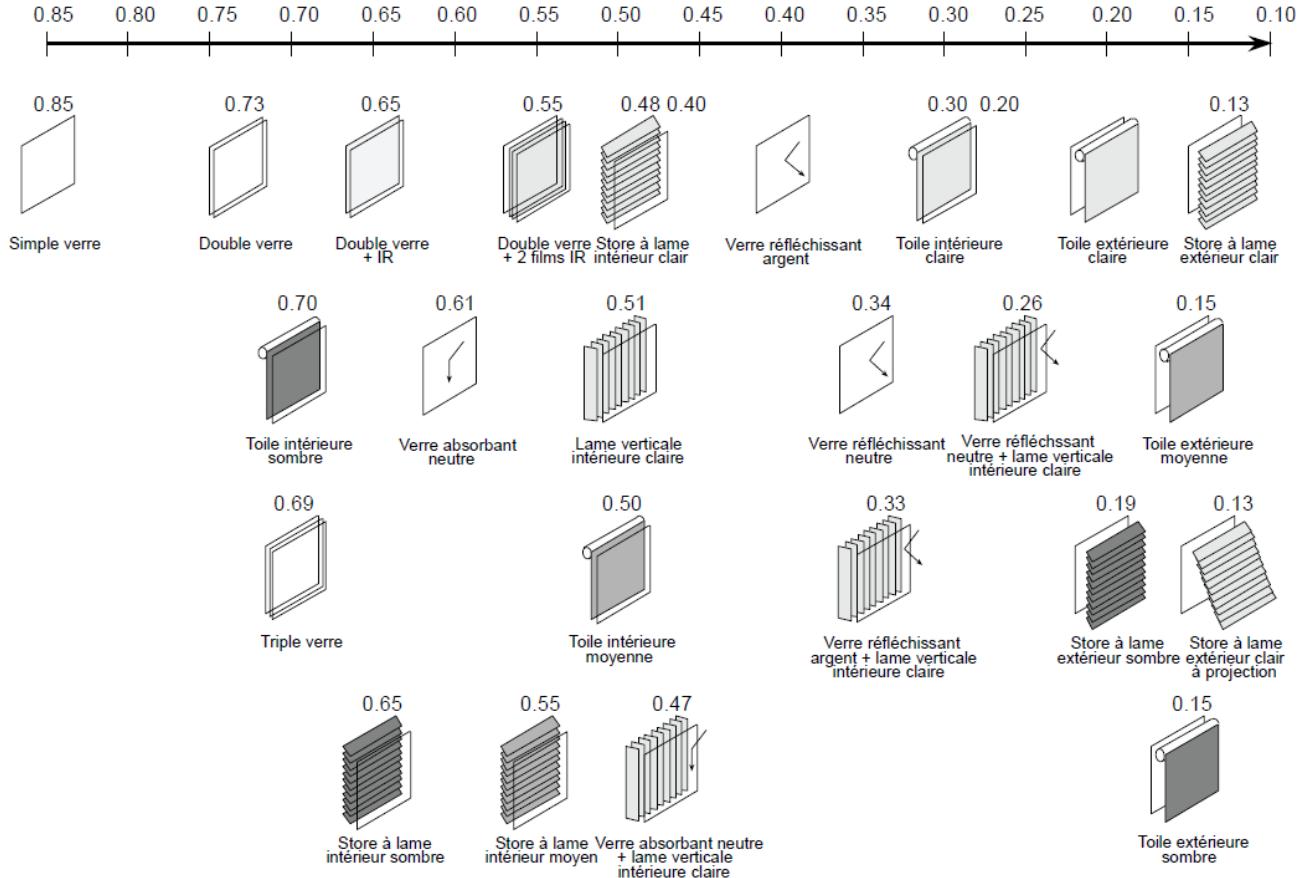


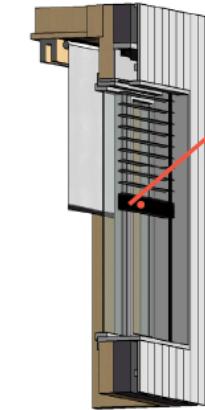
Chart: R. Compagnon, April 2023 • Created with Datawrapper

- The total energy transmittance of a combination of a glazing + a solar protection system can also be defined, this value is often noted g_{tot}
- Standard [EN 14501](#) defines performance classes according to g_{tot}
 - Since g_{tot} also depends of the glazing type, it is often specified for a series of “reference glazing types”. By default or if not specified, type C glazing is assumed.

Class	g_{tot}	Evaluation
4	$g_{tot} < 0.10$	Very good effect
3	$0.10 \leq g_{tot} < 0.15$	Good effect
2	$0.15 \leq g_{tot} < 0.35$	Moderate effect
1	$0.35 \leq g_{tot} < 0.50$	Little effect
0	$g_{tot} \geq 0.50$	Very little effect


Glazing	U^2	g^3
A : clear single glazing	5.8	0.85
B : clear double glazing	2.9	0.76
C : low emission double glazing	1.2	0.59
D : reflective double glazing with a low emission layer	1.1	0.32

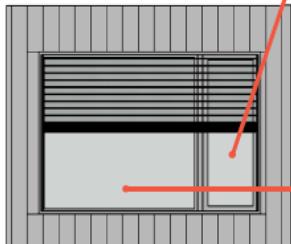
² Thermal transmittance of the glazing alone (W/m²K)


³ Solar factor of the glazing alone

- Quite frequently, g_{tot} values are not provided by manufacturers or remain “hidden” somewhere in their products technical documentations.
- See also: European solar shading organisation website: es-so.com

Examples of g and g_{tot} values

Example: CELLS window system



External blinds

Venetian blinds
Motorized and KNX controlled
Cut-off angle variable
Slat colour grey (int.) ecru white (ext.)
Slat size 80mm

Tilt opening window ($U_g = 1.0 \text{ W/m}^2\text{K}$)

Wooden frame, white mat RAL 9010
Motorized and KNX controlled
Double glazing
Solar Heat Gain Coefficient 65%
Light transmittance 75%
Joint decompression

Fixed glazing ($U_g = 1.0 \text{ W/m}^2\text{K}$)

Wooden frame, white mat RAL 9010
No opening
Double glazing
Solar Heat Gain Coefficient 65%
Light transmittance 75%

- Of course g_{tot} value is affected by textile's colour!

SCREEN NATURE

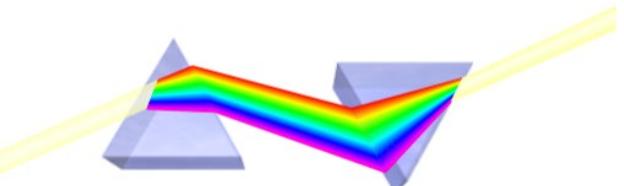
Screen Nature

Samples tested using a spectrometer Lambda 950 Perkin in September-16

Samples tested according to EN 14500 standard defining the measurements and calculation methods as specified in standards "solar protection devices combined with glazing - calculation of solar and light transmittance - part 1: EN 13363-1 simplified method" or part 2: EN 13363-2 detailed method" and EN 410 "Glass in building - Determination of luminous and solar characteristics of glazing".

Echantillons testés avec un spectromètre Lambda 950 Perkin en septembre-16

Echantillons testés selon la norme EN 14500 fixant les méthodes de mesure et de calcul en référence aux normes "dispositifs de protection solaire combinés à un vitrage - calcul du facteur de transmission solaire et lumineuse - partie 1 : EN 13363-1 méthode simplifiée ou partie 2 : EN 13363-2 méthode détaillée" et la norme EN 410 "verre dans la construction détermination des caractéristiques lumineuses et solaires des vitrages".



Openness factor (OF) / Coefficient d'ouverture (Co)	Thermal factors / Valeurs thermiques									Optical factors / Valeurs optiques										
	Fabric / Tissu			Fabric + Glazing / Tissu + Vitrage						Tv	Rv	Tvndif	Tvdifh	Tuv	Daylight utilisation / Utilisation lumière naturelle	Glare control / Contrôle de l'éblouissement EN 14501-2021	Glare control / Contrôle de l'éblouissement EN 14501-2005	Night privacy / Intimité de nuit	Visual contact with the outside / Vision vers extérieur	
				gtot internal blind / gtot intérieur			EN 13363-1													
Colours / Coloris	Ts	Rs	As	A	B	C	D	C	D											
0119 White / Blanc	33	58	9	0.42	1	0.42	1	0.39	1	0.26	2	0.36	1	0.18	2	0.33	0.63	0.29	0.29	0.08
0319 Linen / Lin	30	56	14	0.43	1	0.43	1	0.39	1	0.26	2	0.36	1	0.19	2	0.30	0.59	0.27	0.26	0.07
0348 Silver / Argent	29	51	20	0.46	1	0.45	1	0.41	1	0.27	2	0.39	1	0.2	2	0.27	0.51	0.23	0.24	0.09
0410 Sable / Sable	25	46	29	0.48	1	0.48	1	0.42	1	0.27	2	0.4	1	0.22	2	0.22	0.46	0.18	0.19	0.07
0349 Pearl / Perle	18	34	48	0.54	0	0.53	0	0.46	1	0.28	2	0.46	1	0.25	2	0.13	0.29	0.09	0.11	0.07
0441 Grey / Gris	8	14	78	0.64	0	0.63	0	0.52	0	0.3	2	0.53	0	0.29	2	0.07	0.12	0.03	0.05	0.05
1134 Bronze	7	11	82	0.66	0	0.64	0	0.53	0	0.3	2	0.54	0	0.3	2	0.06	0.10	0.01	0.05	0.05
0440 Charcoal / Charcoal	5	6	89	0.68	0	0.66	0	0.55	0	0.3	2	0.55	0	0.31	2	0.05	0.06	0.00	0.04	0.05

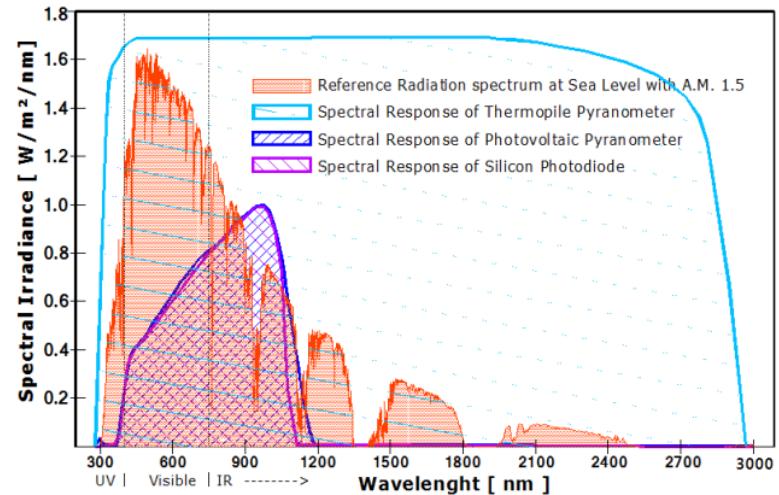
CONTENT:

- **Introduction:**
 - Electromagnetic waves and spectra
 - Radiant and luminous fluxes, solar irradiance/irradiation, illuminance
- **Performance of windows and shades:**
 - Transmittance / Reflectance / Absorbtion
 - g and g_{tot} values, their typical ranges
- **Overview of measuring instruments**

Thermographic cameras

- Thermographic cameras are able to make images from the radiant flux received in the infrared wavelength region, typically $2 \leq \lambda \leq 5.5 \text{ [\mu m]}$ or $7 \leq \lambda \leq 13 \text{ to } 19 \text{ [\mu m]}$
 - Images are produced in a false colour scale indicating the “*apparent*” temperature of the visible surface from the radiant
 - “*Apparent*” temperature is close to true temperature only if the emissivity of the surface is close to 1 (which is the case for dielectric materials)
- Beware the possible reflections on specular surfaces (typically glass)
- Various camera types differ:
 - According their picture resolutions from 80x60 to 640x480 pixels
 - their prices: from ~350 CHF to ~100 kCHF

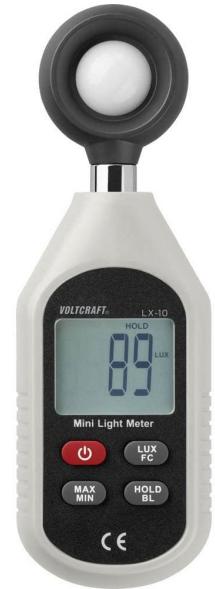
IR image

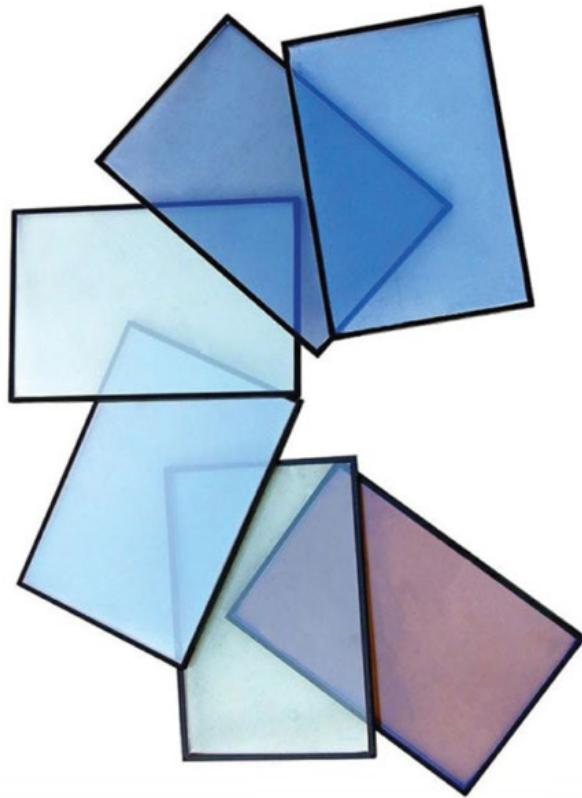


RGB image

Pyranometer

- Sunlight irradiance I_g is measured by a device called “**pyranometer**” accounting for radiation incoming for the whole sky hemisphere at all wavelengths from 300 to 2500 nm
(which is not the case for all sensor types!)
- When dealing with irradiance, the orientation of the receiving plane must be specified. If not specified, one can assume horizontal plane.
- Sometimes solar irradiance data are provided for a plane maintained perpendicular to the direction of the sun. This is called **direct normal irradiance**
- Some advanced devices can measure the **direct** and **diffuse** components separately (for example, SPN1 by Hukseflux)


Spectral Irradiance and Spectral Response



The SPN1 pyranometer

Luxmeter

- Illuminance E_v is measured by a device called “luxmeter” accounting for radiation incoming from the whole hemisphere above the sensor
- When dealing with illuminance, the orientation of the receiving plane must be specified! If not specified, one can assume horizontal plane.
- Some devices can also measure some color characteristics of the incoming light flux (e.g. x,y color coordinates, color temperature)

**Thank you
for your attention**

Dolaana Khovalyg
dolaana.khovalyg@epfl.ch